To optimize wear and friction values, shaft and bearing materials that work together harmoniously are crucial. The interdependence of material pairs constitutes a major challenge for bearing and shaft manufacturers.

Maximizing Shaft and Bearing Lifetimes in Agricultural Machinery
Maximizing Shaft and Bearing Lifetimes in Agricultural Machinery

Nick Van Tol | igus

The Problem

One of the most common causes of downtime and failure of agricultural machinery consists of wear on the machinery’s bearings and shafts. Costs incurred by this wear can be high, especially once maintenance and repair costs are factored into lost operation time. According to a 2013 study conducted by the North Rhine-Westphalia Chapter of Agriculture, farmers must take into account the annual cost of repairs, which typically amounts to 2-5% of the purchase price of the machine. In an industry that is constantly evolving technologically, with ever-increasing costs of investments, this creates a huge cost burden for farmers. In order to help trim this massive cost of machine maintenance and repair, machine elements that require no maintenance or lubrication can create large savings, both financially and in terms of downtime.

To optimize wear and friction values, shaft and bearing materials that work together harmoniously are crucial. The interdependence of material pairs constitutes a major challenge for bearing and shaft manufacturers. In terms of shafting, there are various methods of optimizing the shaft material’s surface to maximize performance. Shafts that are too soft tend to wear easily, and can lead to material breakages at high loads. A very rough shaft surface can rapidly wear down the bearing’s surface, and too smooth of a shaft runs the risk of binding or exhibiting the “stick slip phenomenon,” noticeable by a distinctive squeaking. Adhesion increases the coefficient of friction, and therefore, the wear rate of the bearing, though abraded surfaces with a certain roughness offer an effective antidote against this effect.

Because the shaft and bearing form an operational unit, the individual components should always be considered as part of an overall picture. In this sense, the present study will explain the different processes of surface treating shaft materials, and examining the effects on the wear behavior of plain bearings.

 

To read the white paper click here.

 

The content & opinions in this article are the author’s and do not necessarily represent the views of AgriTechTomorrow

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

The ERT150 - Dorner’s Next Evolution of Edge Roller Technology Conveyors

The ERT150 - Dorner's Next Evolution of Edge Roller Technology Conveyors

The next evolution in Dorner's Edge Roller Technology conveyor platform, the ERT®150, is ideal for small and light-load assembly automation, as well as medical and medical-device assembly application. The ERT platform is the only pallet conveyor of its kind available with an ISO Standard Class 4 rating for cleanroom applications. Earning the ISO Standard 14644-1 Class 4 rating means Dorner's ERT150 will conform and not contribute to the contamination of cleanrooms to those standards. As implied by its name, the ERT150 (Edge Roller Technology) uses rollers to move pallets through the conveyor smoothly with no friction (a byproduct often seen in belt-driven platforms). The conveyor's open design eliminates concerns of small parts or screws dropping into rollers and causing conveyor damage or jamming. The ERT150 is suited to operate in cleanroom environments requiring a pallet handling conveyor. It is capable of zoning for no or low-back pressure accumulation and is ideal for automation assembly applications within industries including medical devices, electronics, consumer goods among others.